

VERSION: 01

FECHA: 06/09/2016

FORMATO CONTENIDO DE CURSO O SÍLABO

1. INFORMACIÓN GENERAL DEL CURSO

Facultad	Ingeniería		Fecha de Actu	Fecha de Actualización		017	
Programa	Ingeniería Quím	nica			Semestre	Sexto	
Nombre	Termodinámica	en Ing	eniería Química		Código	72115	
Prerrequisitos	72105, 72114				Créditos	4	
Nivel de	Técnico		Profesional	х	Maestría	•	
Formación	Tecnológico		Especialización		Doctorado		
Área de	Básica	.,	Profesional o		Electiva		
Formación	Dasica	Х	Disciplinar		Electiva		
Tipo de Curso	Teórico	Х	Práctico		Teórico-prá	ctico	
Modalidad	Presencial	Х	Virtual		Mixta		
Horas de Acompañamiento Directo	Presencial	4	Virtual		Horas de Tra Independier	•	8

2. DESCRIPCIÓN DEL CURSO

El curso proporciona a los estudiantes los fundamentos básicos y los métodos para la determinación de las propiedades termodinámicas que permiten evaluar las condiciones de equilibrio de fases y las del equilibrio químico que están presentes en los procesos de transferencia de masa y de energía en la industria química.

El enfoque del curso está encaminado a evaluar el equilibrio termodinámico (equilibrio físico y químico) mediante dos caminos o métodos: el método de las ecuaciones de estado, el cual usa las ecuaciones de estado para las fases líquida y vapor, y el método de la termodinámica clásica, el cual se basa en los modelos de coeficientes de actividad para la fase líquida y en las ecuaciones de estado para la fase vapor.

3. JUSTIFICACIÓN DEL CURSO

La Termodinámica es la ciencia que estudia la energía, sus transformaciones y las propiedades y procesos que la involucran. La industria química exige de los profesionales de la Ingeniería Química, conocimientos, fundamentos, capacidades y habilidades para el análisis, diseño, simulación y control de procesos fisicoquímicos que requieren aplicar los principios de la conservación de la materia, las leyes de Termodinámica y del análisis termodinámico con el fin de determinar las necesidades de energía, la viabilidad de dichos procesos y su eficiencia termodinámica basado en el balance de exergía. En los procesos de separación el futuro profesional debe tener las herramientas, fundamentos y capacidades para determinar las condiciones de operación usando el principio del equilibrio de fases y en los procesos de sistemas reaccionantes debe determinar las mejores condiciones para optimizar la obtención de los productos deseados aplicando el principio del equilibrio químico

4. PRÓPOSITO GENERAL DEL CURSO

Con el desarrollo del curso se busca alcanzar el siguiente propósito general:

Que los estudiantes apropien los fundamentos básicos de la termodinámica del equilibrio usando ecuaciones de estado y modelos de actividad y su aplicación en la determinación de propiedades termodinámicas de sustancias puras y sistemas multicomponentes, en el equilibrio líquido vapor de

VERSION: 01

FECHA: 06/09/2016

FORMATO CONTENIDO DE CURSO O SÍLABO

procesos de separación y en el equilibrio químico en sistemas reaccionantes, en combinación con la aplicación de la 1ª y 2ª leyes de la termodinámica

5. COMPETENCIA GENERAL DEL CURSO

Interpretar, describir y aplicar los principios del equilibrio de fases y equilibrio químico para resolver problemas de procesos de separación y sistemas reactivos usando ecuaciones de estado y modelos de actividad

VERSION: 01

FECHA: 06/09/2016

FORMATO CONTENIDO DE CURSO O SÍLABO

6. PLANEACIÓN DE LAS UNIDADES DE FORMACIÓN

UNIDAD 1. Análisis termodiná	mico de procesos	COMPETENCIA	Determinar la exergía de sisten abiertos, la exergía suministrad producida o recuperada	
CONTENIDOS	ESTRATEGIA DIDÁCTICA	INDICADORES DE LOGROS	CRITERIOS DE EVALUACIÓN	SEMANA
Análisis termodinámico de procesos. Trabajo de procesos reversibles e irreversibles. Trabajo perdido. Definición de exergía o disponibilidad. Exergía suministrada, exergía producida o recuperada y exergía destruida. Definición de Irreversibilidad. Eficiencia termodinámica. Balance de exergía en sistemas cerrados y sistemas abiertos. Eficiencia termodinámica de dispositivos, equipos, unidades de procesos y ciclos.	·	Resultados de la solución, interpretación y análisis de problemas propuestos.	Cuestionario de preguntas en clases Quiz 1	1

UNIDAD 2. Propiedades termo homogéneas	odinámicas de mezclas	COMPETENCIA	Determinar y aplicar las termodinámicas de mezclas homo y no ideales en diferentes proceso	0
CONTENIDOS	ESTRATEGIA DIDÁCTICA	INDICADORES DE LOGROS	CRITERIOS DE EVALUACIÓN	SEMANA
Propiedades de mezclas gaseosas ideales en sistemas no reactivos y en sistemas reactivos. Fracción molar, volumétrica y en peso. Presión parcial. Volumen molar. Entalpía	propiedades termodinámicas de una mezcla gaseosa ideal en diferentes procesos usando	Resultados de la solución, interpretación y análisis de problemas propuestos.	Taller 1 Quiz 2	3

VERSION: 01

FECHA: 06/09/2016

FORMATO CONTENIDO DE CURSO O SÍLABO

molar y entropía molar de mezclas gaseosas ideales				
Propiedades de mezclas gaseosas no ideales. Propiedad residual. Entalpía molar y entropía molar de mezclas gaseosas. Ecuaciones de estado. Ecuación Virial. Ecuaciones de estado cúbicas. Entalpía y entropía molares. Fugacidad y Coeficiente de fugacidad de componentes en fase gaseosa. Balance de materia, energía y entropía	Resolución de problemas de aplicación en diferentes sistemas usando programas en EXCEL y MATLAB	Resultados de la solución, interpretación y análisis de problemas propuestos en grupo e individual	Exposición sobre ecuaciones de estado virial y cúbicas Quiz 3	2
Modelos de actividad. Actividad. Coeficientes de actividad. Modelo de van Laar. Modelo de Wilson. Modelo NRTL. Fugacidad y Coeficiente de fugacidad de componentes en soluciones. Entalpía y entropía de soluciones. Balance de materia, energía y entropía.	Resolución de problemas de aplicación en diferentes sistemas usando programas en EXCEL y MATLAB	Consulta en internet de otros modelos de actividad Resultados de la solución, interpretación y análisis de problemas propuestos.	Taller 2 Examen Parcial	3

UNIDAD 3.	Equilibrio de fases		COMPETENCIA	Calcular las condiciones temperatu composición del equilibrio de fases en los procesos de separación	
CON	ITENIDOS	ESTRATEGIA DIDÁCTICA	INDICADORES DE LOGROS	CRITERIOS DE EVALUACIÓN	SEMANA
Criterio gener	al del equilibrio de	Determinación de puntos de	Consulta en los textos e	Cuestionario de preguntas en	
fases. Ecuaci	ones de equilibrio	Determinación de puntos de	Internet ecuaciones de	clases.	4
basadas en	ecuaciones de	burbuja y de rocío con la ley de	equilibrio de fase.		

VERSION: 01

FECHA: 06/09/2016

FORMATO CONTENIDO DE CURSO O SÍLABO

estado y modelos de actividad.	Raoult y sus desviaciones usando	Resultados de la solución,	Quiz 4	
Ley de Raoult. Diagramas de	programas en EXCEL y MATLAB	interpretación y análisis de		
fase Txy y Pxy. Interpretación.		problemas propuestos.	Taller 3	
Diagramas hxy. Cálculos de				
puntos de burbuja y de rocío con				
la ley de Raoult y con la ley de				
Raoult modificada.				
Determinación de puntos				
azeotrópicos de sistemas				
binarios.				
Cálculo Flash. Vaporización				
instantánea. Condensación				
parcial. Cálculo de la relación				
G/F.				
Balances de energía en una				
etapa de separación				

UNIDAD 4.	Equilibrio Químico		COMPETENCIA	Calcular las condiciones de temper grados de conversión del equilib sistemas reaccionantes.	
CONTENIDOS		ESTRATEGIA DIDÁCTICA	INDICADORES DE LOGROS	CRITERIOS DE EVALUACIÓN	SEMANA
Ecuación ger químico. Grad conversión f de materia reaccionante general de equilibrio. equilibrio bas de van't Hoff	s simples. Ecuación la constante de Constante de lada en la ecuación	Determinación del grado de conversión en sistemas reaccionantes simples usando programas en EXCEL o MATLAB	Consulta de temas de equilibrio químico de un proceso específico Presentación de resultados	Cuestionario de preguntas en clases. Quiz 5 Taller 4 Examen Final	3

CÓDIGO: FOR-DO-020
VERSION: 01

FECHA: 06/09/2016

FORMATO CONTENIDO DE CURSO O SÍLABO

Métodos de cálculos de equilibrio químico basados en los multiplicadores de Lagrange				
múltiples. Métodos de cálculos	conversión en sistemas de varias	Consulta de temas de equilibrio químico de un proceso con reacciones múltiples Presentación de resultados	Taller 4 Examen Final	1

VERSION: 01

FECHA: 06/09/2016

FORMATO CONTENIDO DE CURSO O SÍLABO

7. BIBLIOGRAFÍA BÁSICA DEL CURSO

SMITH & van Ness. Introducción a la Termodinámica para Ingeniería Química. 7ª. Edición

VAN WYLEN Gordon. Fundamentos de Termodinámica Clásica.

SONNTAG & Van Wylen. Introducción a la Termodinámica Clásica y Estadística

Cengel Yunus. Termodinámica. 7ª edición

BELLO B. Carlos A. Fundamentos de Termodinámica del Equilibrio. Módulos 1, 2, 3 y 4. Universidad del Atlántico. 2015

8. BIBLIOGRAFÍA COMPLEMENTARIA DEL CURSO

Programas en EXCEL: Mezcla de gases ideales, Análisis exergético de procesos, mezcla aire-vapor, ecuaciones de estado, efectos térmicos. **BELLO B. Carlos A.** Facultad de Ingeniería. Universidad del Atlántico. 2016

Programas en MATLAB: Cálculo de Puntos de Burbuja y Rocío, Cálculo Flash. Cálculo del equilibrio químico. **BELLO B. Carlos A.** Facultad de Ingeniería. Universidad del Atlántico. 2016